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What 1s Discrete Choice Modelling (DCM)?

People make choices every day and across dimensions.

e Transport mode choice (e.g., car, bicycle, public transport), *HF&
destination choice (e.g., tourist destinations, workplaces), route ==y

choice, etc.
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Choice modellers use choices

* to understand the factors that lead people to choose alternatives.
* to analyse policy and forecast demand.

Discrete choice modelling as an art
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* Requires specifying utility functions by selecting a combination
of variables, transformations, and behavioural assumptions that
capture decision-making behaviours '.

Tvan Cranenburgh et al., (2022)



Model specification problem

Modellers must define a specification by making several interrelated decisions!:

Select attributes: Which variables influence choice? (e.g., time, cost)

Allow alternative-specific taste parameters: Generic or alternative-specific?
Try to accommodate for non-linearities and interactions

Estimate and evaluate
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Metaheuristics: traditional assistance

Combinatorial, optimization-based, and hypothesis-driven metaheuristics

Simulated Annealing

Automatic relevance determination through Bayesian inference

Variant Neighborhood search

Bi-level optimization framework that integrates prior constraints

Grammatical Evolution

Bi-level optimization framework integrating GE and singular value decomposition
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Rescarch gap

Model specification is not a static task -> it’s a learning process!!!
Metaheuristics

« automate part of the process

* static, lack memory, poor knowledge transfer

* fail to capture learning-driven nature of the modelling process

— Reinforcement learning 1s a promising alternative to automate the model specification search process

How can we leverage RL algorithms to automate the model specification search process?

l, How to frame the MS process as an adaptative-learning process

l, How to include modelling outcomes as part of the reward function




Reinforcement learning paradigm




Reinforcement Learning

* Goal: Learn how to take actions (1) to maximize total discounted rewards (R)
* Data: Obtained by interacting with an environment (state, action, reward, next state)
« Markov decision process defined by (S, 4, R, 7, y)

Action
T = P(St+1|5t) — At

State Sy, 4

State s;

T

Feedback that measures the agent’s action

Environment

Agent-environment iteration. Adapted from Sutton and Bartto (1999)



Example S Reinforcement Learning

e "
Turn:  -0.7932
Engine: 0.99999

Fitness: 9.78920
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Reinforcement Learning

Goal: Learn how to take actions (1r) to maximize total discounted rewards (R)

Data: Obtained by interacting with an environment (state, action, reward, next state)

The agent’s policy infers the best action to take at its state

Action
T = P(St41lsp) = ar

State 5441

m*(s) = argmax Q(s;, a;)

a
Q-value captures the expected total discounted future reward @
. State s, Environment
Q(s;, a;) = E[R¢|ss,ar] and R, = Y72, v'r } |

How to learn the optimal policy 7*?




Reinforcement Learning algorithms

To train an RL agent, we require:

1. an optimisation algorithm

e  Value-based: learn Q-values télﬂn

a* = argmax Q(s;, a;) o 1
. Phaseslh
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*  Policy-based: learn policy directly Environment
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. . Deep Q-Network architecture
2. aneural network as a function approximator (Q-values) Pa

3. aloss function to update network parameters



State space

Any model specification (state) is represented as lists of tuples, each of them representing a component of

the model

S =1(0,linear,0,2),(1,linear,1,1), (2, box — cox,0,0),(6,log, 1,0)]

Covariate index
Generic — Alt. specific taste parameters

v

Transformation

v

v

Attribute index

* [Each tuples 1s encoded and decoded as one-hot vectors for NN processing.

12



Action space - oveEw

* Defines all feasible operations that the agent can apply to any encoded model specification.
— Add new variables ( generic-linear additive)
— Change any tuple component
— End model specification process
* Masks invalid operations based on the current specification
S? =[ ]- (add,1,linear,0,0)
S; = [(1,linear, 0,0)] — (change, 1,linear, 1, 0)
SZ =[(1,linear, 1, 0)] »{add; Hlinear;0,0) (add, 3, linear, 0, 0)

S3 = [(1,linear, 1,0), (3, linear, 0,0)] - (change, 3,log, 0, 0)

S¢ =1[(1,linear, 1,0), (3,log,0,0)] - (end)
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Reward function

* Like human modellers, the agent receives feedback only after model estimation. Thus, the episodic final
reward 1s distributed across all the actions taken during the episode:

M - M
RL=R, -y*!, R, =M,=—""e "
° e ¥ ° " Mmaxe_Mmine

Where [ = 1, ..., L number of actions at episode e

* What if there are multiple modelling outcomes?

y _
R, = zwm My, | - Iconverged
m

* How to incorporate behavioural expectations?
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Delphos: A DQN agent that automate the utility specification

process




Delphos framework overview

DQN agent
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Hess et al., (2019). Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application.



Experimental cases




Simulated experiment

( variables = [ASC, X{, X5, X3, X4, X5, X¢].
transformations = [linear, logarithm, box — cox]
taste = [generic, specific]

\ covariates = [ |

modelling space = <

reward weights = [AIC: 1]
agent = episodes = [50000]
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Reward

Result

Learning curve (10 runs) Q-value distribution
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Results

Experiments

AlC

3406

3405

3404

3403

3402

3401

3400

3399

0 200 400 600 800 1000 1200 1400
Episode

[INFO] New best candidate for AIC at 0: 3406.01 (000_300 _300_100_300_300_100)

[INFO] New best candidate for AIC at 50: 3400.92 (000_100 200 300 _300_100 100)

[INFO] New best candidate for AIC at 279: 3400.85 (000_100_200_300_300_100_200)

[INFO] New best candidate for AIC at 505: 3400.29 (000_100_300_100_300_000_000)

[INFO] New best candidate for AIC at 738: 3399.69 (000_100_200_100_300_200_000)

[INFO] New best candidate for AIC at 1442: 3398.81 (000_100_200_100_300_100_000) 20



Empirical experiments

a. Swissmetro (Bierlaire et al., 2001)

( variables = [ASC, TT, TC, HE, SE]

transformations = [linear, logarithm, box — cox]
taste = [generic, specific]

\ covariates = [age, income, class, ga, gender |

modelling space = -

(reward weights = [AIC: 1]
agent = < episodes = [50000]
early stopping = [0.05]

. . . 21
ASC: Alternative-specific constant; TT: Travel time;

TC: travel cost HE: Headway SE: Seat conf.



Re SUltS Experiments
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2025-05-2102:59:42,812 [INFO] Training started at Wed May 21 02:59:42 2025

2025-05-2102:59:44,174 [INFO] New best candidate for AIC at episode 47: 9153.1186 (000_200_000_000_000)
2025-05-2102:59:44,963 [INFO] New best candidate for AIC at episode 62: 8014.5405 (100_110_101 111 101)
2025-05-2102:59:45,232 [INFO] New best candidate for AIC at episode 75: 7909.2325 (000_101_113 113 100)
2025-05-2103:00:36,634 [INFO] New best candidate for AIC at episode 416: 7879.7047 (000_210_111_100_111)
2025-05-2103:00:47,277 [INFO] New best candidate for AIC at episode 465: 7858.4485 (100_101 113 110 111)
2025-05-2103:00:50,213 [INFO] New best candidate for AIC at episode 480: 7737.6426 (000_200 111 111 100)
2025-05-2103:01:18,928 [INFO] New best candidate for AIC at episode 611: 7656.8514 (100_101_ 112 101_103)
2025-05-2103:01:25,465 [INFO] New best candidate for AIC at episode 639: 7589.1305 (100_111_112 101_112)
2025-05-2103:08:02,441 [INFO] New best candidate for AIC at episode 1720: 7584.1841 (000_111 112 111 110)
2025-05-21 03:08:59,581 [INFO] New best candidate for AIC at episode 1851: 7577.6789 (100 _111 112 111 112) 22
2025-05-2103:18:20,737 [INFO] New best candidate for AIC at episode 2908: 7566.1644 (100_300_112_ 111 112)



Results

Pareto front
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Empirical experiments

b.1. Decisions (Calastri et al., 2020)

( variables = [ASC, ITT, OTT, TTC ]
_ transformations = [linear, logarithm, box — cox]
modelling space = < : : o
taste = [generic, specific|
\ covariates = [ |

(reward weights = [LL: 0.7, Params:0.3]
episodes = [50000]
agent = 1 early stopping = [0.01]
\ bexpectations =[1."="3:"="]
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Results

Pareto front
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[imitations and future research

The agent learns to take actions; though, they are
randomly sampled from the memory buffer
— prioritise them

I swear ...... X
I parked my bike

here last night %

B-‘Iey, Hey listen!! )
y mom can handle thi

o’

Further refinement of reward function is possible
* behavioural realism
 Significance of parameters
« Willingness to pay

How to incorporate choice data knowledge to
transfer knowledge?

How can multiple model family-specialised agents
(MNL, LC, MXL) collaborate by sharing
specifications and reward signals? Hipsoven @ s
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27



% choice
TUDelft UNIVERSITY OF LEEDS modelling

centre

Comments, suggestions, questions?
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